Turing Machine with Faults, Failures and Recovery
Alex Vinokur

Turing Machinewith Faults, Failures and Recovery

Alex Vinokur

Holon, Israel
alexvn@barak-online.net
alex.vinokur@gmail.com

Abstract. A Turing machine with faults, failures and recgv€lMF) is described.
TMF is (weakly) non-deterministic Turing machinenswsting of five semi-infinite
tapes (Master Tape, Synchro Tape, Backup Tape,upasinchro Tape, User
Tape) and four controlling components (Program,rBag Apparatus, User).
Computational process consists of three phasegr@roPhase, Failure Phase,
Repair Phase). C++ Simulator of a Turing machiné vaults, failures and
recovery has been developed.

1. Informal Definition
1.1. Structure

In contrast to practical situation a regular TurMgchine never fails [1].

Some Turing machine that may fail is describedwelo

A Turing machine with faults, failures and recov€fF) is (weakly) non-deterministic Turing
machine consisting of:

* five semi-infinite (to the right) tapes:
Master Tape,
Synchro Tape,
Backup Tape,
Backup Synchro Tape,
User (Tester) Tape;

 four controlling components (sets of rules)
v" Program,
v' Daemon,
v Apparatus,
v User.
Only daemon has non-deterministic behavior.

AN NN

Page 1 of 8

Turing Machine with Faults, Failures and Recovery
Alex Vinokur

1.2. Tapes, Alphabets
The Master Tape corresponds to the tape of regular determinigtiény machine.
Head of theSynchro Tape is synchronized with head of Master Tape.
TheBackup Tape is used to back Master Tape data up.
TheBackup Synchro Tape is used to back Synchro Tape data up.
TheUser Tapeis used to perform pure/ideal computation (withawidts and failures).

The Master Tape, the Backup Tape and the User digpasing the same (user-defined) alphabet.
The Synchro Tape and the Backup Synchro Tape arg thee same special (embedded, user-
independent) alphabet.

1.3. Controlling Components, States and Rules
1.3.1. States
Program contains:

* user-defined states (initial, internal and halttates),
* user-required check-point states (indirectly defibg user),

* embedded (user-independent) shutting down state.

Note 1. A user may mark some of user-defined ratesheck-points. Check-point states are derived
from these rules.

Note 2. Shutting down state differs from user-dedimalting state.

Daemon contains three embedded (user-independent) states:
* passive,

* active,

* aggressive.

Apparatus contains two embedded (user-independent) states:
* normal,
* emergency.

User contains two embedded (user-independent) states:
* tracking,
* stabilizing.

1.3.2. Rules
There are three sets of rules:
* Daemon's set of non-deterministic rules.
The set includes only daemon states.
e Common set of deterministic rules
The set includes states of all controlling compas€¢program, daemon, apparatus, user).
In fact, this common set consists of two subsets:
 program rules including
v’ user-defined rules,
v'user-required check-point rules;

Page 2 of 8

Turing Machine with Faults, Failures and Recovery
Alex Vinokur

* outside rules including
v’ deterministic daemon rules,
v apparatus rules,
v'user rules.

* Daemon-defined set of rules (fault rules).

1.3.3. Transitions
Each transition step consists of two half-stepstgla

* First tact. Daemon performs transition according to non-aei@istic rule from passive state to
{passive, active, aggressive}.
* Second tact. One of three kinds of transitions is performed:
» normal transition, if daemon is ipassive state,
» fault transition, if daemon is iactive state,
» failure transition, if daemon is iaggressive state.
Note. On the second tact daemon always goes isgi@astate.

1.3.4. Faultsand failures

The difference between fault and failure is asoiwH:
e Fault transition:

v/ apparatus stay in normal state,

v illegal (daemon-defined) program rule is applieat] ghe program continues computation.
* Failuretransition:

v/ apparatus go into in emergency state,

v program is unable to continue computation.

1.4. Computational process
There are three phases of computational process:
* program phase,
* failure phase,
* repair phase.

1.4.1. Program phase
Program phase includes 7 stages.

1.4.1.1. Stagetl. Computation proper
If current program state is halting program state thengo to Stage#7.
If current program state is check-point program state thengo to Stage#2.
Otherwise:
« Computation on Master Tape is performed accordirthe set of program rules;
» Head of Synchro Tape is synchronized with head a$ter Tape.

Page 3 of 8

Turing Machine with Faults, Failures and Recovery
Alex Vinokur

1.4.1.2. Staget#2. Computation check
1) Rewind Master Tape and User Tape to the left side.
2) Compare data on Master Tape and User Tape.
If the data are identical
O thengo to Stage#3
O elsego to Sage#s.

1.4.1.3. Stage#3. Back up
1) Rewind Master Tape and Backup Tape to the left side.
2) Write Master Tape to Backup Tape.
3) Rewind Synchro Tape and Backup Synchro Tape to theitigt s
4) Write Synchro Tape to Backup Synchro Tape.
5) Go to Stage#4.

1.4.1.4. Staget#4. Check of back up
1) Rewind Master Tape and Backup Tape to the left side.
2) Compare data on Master Tape and Backup Tape.
If the data are not identical
O thengo to Sage#3.

3) Rewind Master Tape, Synchro Tape and Backup Synchro Taihe left side.
4) Compare data on Synchro Tape and Backup Synchro Tape;
Set up the head of Master Tape to continue computation.

If the data are identical
O thengo to Stage#l
O elsego to Sage#3.

1.4.1.5. Stage#5. Recovery
1) Rewind Master Tape and Backup Tape to the left side.
2) Write Backup Tape to Master Tape.
3) Rewind Synchro Tape and Backup Synchro Tape to theibdt s
4) Write Backup Synchro Tape to Synchro Tape.
5) Go to Stage#6.

1.4.1.6. Staget6. Recovery check
1) Rewind Master Tape and Backup Tape to the left side.
2) Compare data on Master Tape and Backup Tape.
If the data are not identical
O thengo to Stage#3
3) Rewind Master Tape, Synchro Tape and Backup Synchro Taihe left side.
4) Compare data on Synchro Tape and Backup Synchro Tape;
Set up the head of Master Tape to continue computation.
If th
e data are identical
O thengo to Sage#l
O elsego to Sage#s.

Page 4 of 8

Turing Machine with Faults, Failures and Recovery
Alex Vinokur

1.4.1.7. Staget7. Summary check
1) Rewind Master Tape and User Tape to the left side.
2) Compare data on Master Tape and User Tape.
If the data are identical
O thengo to shutting down state
O elsego to Sage#s.

1.4.2. Failure phase

1) Apparatus go into emergency state.
2) Go to Repair phase

1.4.3. Repair phase
1) User goesinto stabilizing state.
2) Apparatus go into normal state
User goesinto tracking state

2. Formalized definition (in outline)
2.1. Basic Turing machine
Let TM =<Q, T, 1,6, !, b,qo, gin> be a (regular deterministic one-type) Turing miaehvith semi-
infinite tape.
Elements of the 8-tuple mean as follows:
v Qs the set of the states;
v T is the symbol alphabet;
v | is the alphabet of input symbols;IT;
v 8 :QxT - QxTx{L, R, N} is the transition function (rules).
v' l'is the left-side-marker symbo[;1T, but !1;
v' b is the empty symbol; BT, but bJI;
v o is the initial stategoJQ;
v Grin is the halting stategy, Q.

Page 5 of 8

Turing Machine with Faults, Failures and Recovery
Alex Vinokur

2.2. Turing machine with faults, failures and recovery
Definition. 5-tape expanded Turing machine TMF (with semiitd tapes) corresponding to a
(regular deterministic one-type) Turing machine B\M.7-tuple
TMF=<D,U,A P, T,I,S3,6,y, 1, !, b,do, Gin, Ostop>-
Elements of the 17-tuple mean as follows:
v' D = {passive, active, aggressive} is the set of(#mabedded) states of the daemon;
v U = {tracking, stabilizing} is the set of the (emhuksdi) states of the user;
v A = {normal, emergency} is the set of the (embeddgdjes of the apparatus;
v Pis the set of the all program states (see belosvnext paragraph)
v T is from TM and used as the symbol alphabets fostbtal'ape, Backup Tape and User Tape;
v' | is from TM;
v ' S=/{!, b, +} is the symbol alphabet for Synchro Eagnd Backup Synchro Tape;
v' § is from TM;
v 0:QxT- QxTx{L, R, N} is the set of the program rules markeg (Iser) as check-point rules;
0L,
vy:QxT- QxTx{L, R, N}is the set of the function of illegal (@) program rulesy O §;
v n:D - ’set of subsets dD’ is the daemon transition function (rules).
vV a:DxUxAXPxTxSxTxSxT - DxUxAxPx Tx{L, R, N} x Sx{L, R, N} xTx{L, R, N}
xSx{L, R, N} xTx{L, R, N} is the global transition function (rules)
Note. Ther transition function depends on théransition function.
v lis from TM;
v bis from TM;
v (o is from TM;
v’ (in is from TM;
v’ Osop IS the shutting down stat@siop P (Ostop = Gfin)-
Note. Obviously, TMF with one Master Tape can beegalized to TMF with several Master Tapes.

2.2.1. Program states
The set of the all program stat®y ¢onsists of the following subsets and states:

* Q (from TM),

* P1 - the set of the check-points states defined erb#sis of information contained in the
transition function.

* P2 - the set of the computation check states;
* P3 - the set of the backup states;

* P4 - the set of the backup check states;

* P5 - the set of the recovery states;

* P6 - the set of the recovery check states;

* P7 - the set of the summary check states;

* O«op - the shutting down state.
The states contained in the sSBBP7 are embedded states. They don't depend on spleasic
Turing machine TM.

Page 6 of 8

Turing Machine with Faults, Failures and Recovery
Alex Vinokur

2.2.2. Transition functions (the sets of the rules)
2.2.2.1. p-function
Daemon transition functiom contains the following rules:
> w(passive) = {active, passive, aggressive},
> w(active) = {passive},
» u(aggressive) = {passive}.

2.2.2.2. m-function
Global transition functiom contains the following kinds of the rules:

Stage#1. Rules dfomputation proper;
Stage#2. Rules @@omputation check;
Stage#3. Rules @ack up;

Stage#4. Rules @@heck of back up;
Stage#5. Rules dRecovery;

Stage#6. Rules dRecovery check;

Stage#7. Rules @ummary check.

The rules for Stage#1 are based ondtaedo transition functions.

The rules for Stages#2-#7 are mostly TM-independant don't depend on the basic Turing
machine TM.

* S & 6 6 oo

3. C++ Simulator
C++ Simulator (Beta version) of a Turing Machinghfaults, failures and recovery can be
downloaded at:

* http://sourceforge.net/projects/turing-machif(@durceForge.net, the world's largest
OpenSource software development website);

e http://alexvn.freeservers.com/sl/turing-s.html

The C++-program simulates a Turing Machine witHtigdailures and recovery.
Following input files define the machine:

v metafile,

v' description file,

v state file,

v alphabet file,

v’ transition file,

v" input word(s) file(s).

Each row of metafile contains data related to sdoming machine with faults, failures and recovery:
name of description file,

number of master tapes,

name of states file,

name of alphabet file,

name of transition file,

name(s) of input word(s) file(s).

* S & 6 oo

Description file contains verbal description of thachine [optional].

Page 7 of 8

Turing Machine with Faults, Failures and Recovery
Alex Vinokur

State file contains list of initial, halting andennal user-defined program states.
Alphabet contains list of empty, input and intersyaibols.

Each row of transition contains some transitioe;ul
4 some rules may be marked as check-points;
4 illegal daemon-defined rules (fault rules) may Hdex.

Each row of input word(s) contains input word forree tape.

References
[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman, The Design and Analysis of Computer
Algorithms, Addison Wesley, 1974.

Page 8 of 8

